

SMP100LC

TRISIL[™] FOR TELECOM EQUIPMENT PROTECTION

FEATURES

- Bidirectional crowbar protection
- Voltage range from 8V to 400V
- Low capacitance from 20pF to 45pF @ 50V
- Low leakage current : I_R = 2µA max
- Holding current: $I_H = 150 \text{ mA min}$
- Repetitive peak pulse current: IPP = 100 A (10/1000µs)

MAIN APPLICATIONS

Any sensitive equipment requiring protection against lightning strikes and power crossing.

These devices are dedicated to central office protection as they comply with the most stressfull standards.

Their Low Capacitances make them suitable for ADSL.

DESCRIPTION

The SMP100LC is a series of low capacitance transient surge arrestors designed for the protection of high debit rate communication equipment. Its low capacitance avoids any distortion of the signal and is compatible with digital transmission line cards (xDSL, ISDN...).

SMP100LC series tested and confirmed compatible with Cooper Bussmann Telecom Circuit Protector TCP 1.25A.

BENEFITS

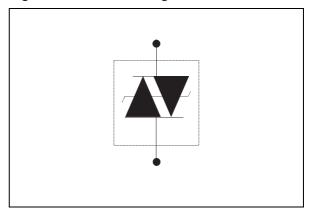

Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. They are used to help equipment to meet main standards such as UL60950, IEC950 / CSA C22.2 and UL1459. They have UL94 V0 approved resin. SMB package is JEDEC registered (DO-214AA). Trisils comply with the following standards GR-1089 Core, ITU-T-K20/K21, VDE0433, VDE0878, IEC61000-4-5 and FCC part 68.

Table 1: Order Codes

Part Number	Marking
SMP100LC-8	PL8
SMP100LC-25	L25
SMP100LC-35	L35
SMP100LC-65	L06
SMP100LC-90	L09
SMP100LC-120	L12
SMP100LC-140	L14
SMP100LC-160	L16
SMP100LC-200	L20
SMP100LC-230	L23
SMP100LC-270	L27
SMP100LC-320	L32
SMP100LC-360	L36
SMP100LC-400	L40

Figure 1: Schematic Diagram

SMP100LC

STANDARD	Peak Surge Voltage (V)	Waveform Voltage	Required peak current (A)	Current waveform	Minimum serial resistor to meet standard (Ω)
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 2/10 μs 100 10/1000 μs		0 0
GR-1089 Core Second level	5000	2/10 µs	500	2/10 µs	0
GR-1089 Core Intra-building	1500	2/10 µs	100	2/10 µs	0
ITU-T-K20/K21	6000 1500	10/700 µs	150 37.5	5/310 µs	0 0
ITU-T-K20 (IEC61000-4-2)	8000 15000	1/60 ns	ESD contact discharge ESD air discharge		0 0
VDE0433	4000 2000	10/700 µs	100 50	5/310 µs	0 0
VDE0878	4000 2000	1.2/50 µs	100 50	1/20 µs	0 0
IEC61000-4-5	4000 4000	10/700 μs 1.2/50 μs	100 100	5/310 μs 8/20 μs	0 0
FCC Part 68, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 100	10/160 μs 10/560 μs	0 0
FCC Part 68, lightning surge type B	1000	9/720 µs	25 5/320 μs		0

Table 2: In compliance with the following standards

Table 3: Absolute Ratings $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit	
Ірр	Repetitive peak pulse current (see figure 2)	10/1000 μs 8/20 μs 10/560 μs 5/310 μs 10/160 μs 1/20 μs 2/10 μs	100 400 140 150 200 400 500	A
I _{FS}	Fail-safe mode : maximum current (note 1)	8/20 μs	5	kA
I _{TSM}	Non repetitive surge peak on-state current (sinusoidal)	t = 0.2 s t = 1 s t = 2 s t = 15 mn	24 15 12 4	A
l ² t	I ² t value for fusing	t = 16.6 ms t = 20 ms	20 21	A ² s
T _{stg} Tj	Storage temperature range Maximum junction temperature		-55 to 150 150	°C
ΤL	Maximum lead temperature for soldering during 10 s.	260	°C	

57

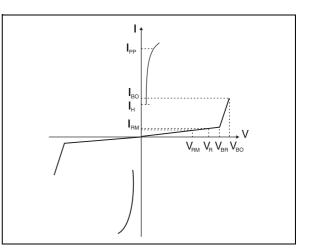

Note 1: in fail safe mode, the device acts as a short circuit

Table 4: Thermal Resistances

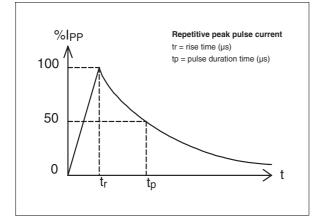
Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient (with recommended footprint)	100	°C/W
R _{th(j-l)}	Junction to leads	20	°C/W

Table 5: Electrical Characteristics (T_{amb} = 25°C)

Symbol	Parameter
V _{RM}	Stand-off voltage
V_{BR}	Breakdown voltage
V _{BO}	Breakover voltage
I _{RM}	Leakage current
IPP	Peak pulse current
I _{BO}	Breakover current
Ι _Η	Holding current
V _R	Continuous reverse voltage
I _R	Leakage current at V _R
С	Capacitance

	I _{RM} @	₽ V _{RM}	I _R @	V _R	Dynamic V _{BO}		atic @ I _{BO}	lΗ	С	С
Types	ma	ax.	max.		max.	max.	max.	min.	typ.	typ.
			no	te1	note 2	no	te 3	note 4	note 5	note 6
	μA	V	μΑ	V	V	V	mA	mA	pF	pF
SMP100LC-8		6		8	25	15		50 (typ.)	NA	75
SMP100LC-25		22		25	40	35			NA	65
SMP100LC-35		32		35	55	55			NA	55
SMP100LC-65		55		65	85	85			45	90
SMP100LC-90		81		90	120	125			40	80
SMP100LC-120		108		120	155	160			35	75
SMP100LC-140		120	5	140	185	190	000	150	30	65
SMP100LC-160	2	144	5	160	205	200	800	150	30	65
SMP100LC-200		180		200	255	250			30	60
SMP100LC-230		207		230	295	285			30	60
SMP100LC-270		243		270	345	335			30	60
SMP100LC-320		290		320	400	390	1		25	50
SMP100LC-360		325		360	460	450	1		25	50
SMP100LC-400		360		400	540	530	1		20	45

Note 1: IR measured at VR guarantee VBR min \ge VR


Note 2: see functional test circuit 1

Note 3: see test circuit 2

Note 4: see functional holding current test circuit 3 Note 5: $V_R = 50V$ bias, $V_{RMS}=1V$, F=1MHz

Note 6: V_R = 2V bias, V_{RMS}=1V, F=1MHz

Figure 2: Pulse waveform

Figure 4: On-state voltage versus on-state current (typical values)

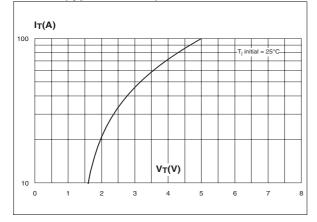
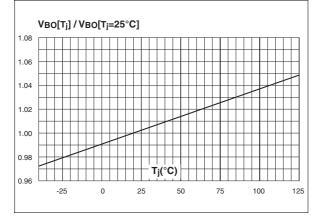



Figure 6: Relative variation of breakover voltage versus junction temperature

Figure 3: Non repetitive surge peak on-state current versus overload duration

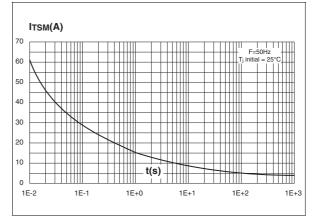


Figure 5: Relative variation of holding current versus junction temperature

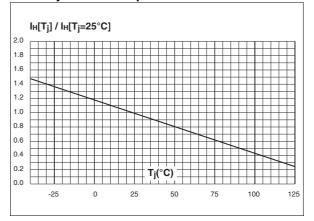
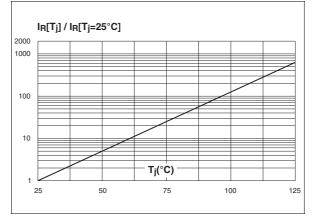



Figure 7: Relative variation of leakage current versus junction temperature (typical values)

47/

Figure 8: Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4, SCu=35µm, recommended pad layout)

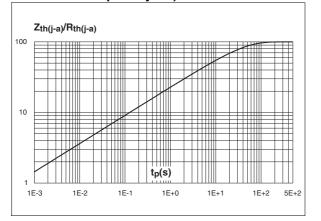
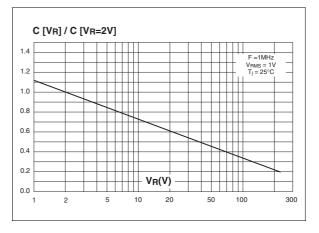
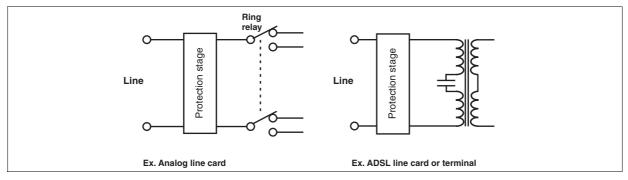
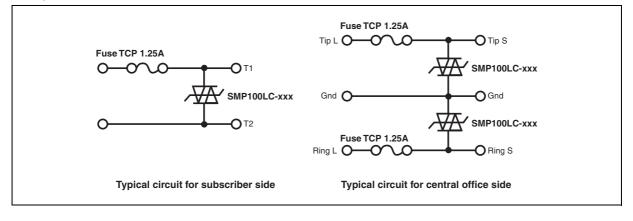
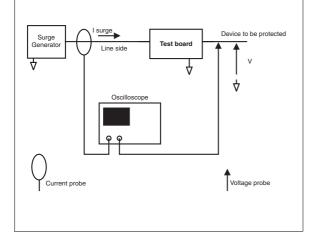




Figure 9: Relative variation of junction capacitance versus reverse voltage applied (typical values)

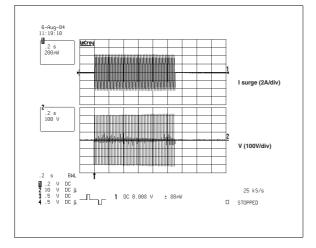


APPLICATION NOTE

In wireline applications, analog or digital, both central office and subscriber sides have to be protected. This function is assumed by a combined series / parallel protection stage.

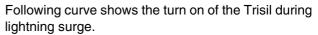


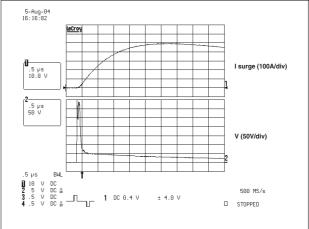
In such a stage, parallel function is assumed by one or several Trisil, and is used to protect against short duration surge (lightning). During this kind of surges the Trisil limits the voltage across the device to be protected at its break over value and then fires. The fuse assumes the series function, and is used to protect the module against long duration or very high current mains disturbances (50/60Hz). It acts by safe circuits opening. Lightning surge and mains disturbance surges are defined by standards like GR1089, FCC part 68, ITU-T K20.


57

Following figure shows the test method of the board having Fuse and Trisil.

These topologies, using SMP100LC from ST and TCP1.25A from Cooper Bussmann, have been functionally validated with a Trisil glued on the PCB. Following example was performed with SMP100LC-270 Trisil. For more information, see Application Note AN2064.

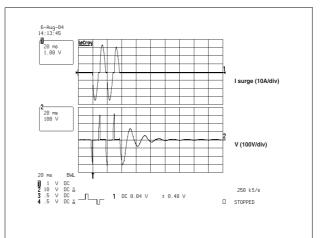

Following curve shows Trisil action while the fuse remains operational.



Test conditions:

600V 3A 1.1s (first level), $T_{amb} = 25^{\circ}C$ Test result:

Fuse and Trisil OK after test in accordance with GR1089 requirements

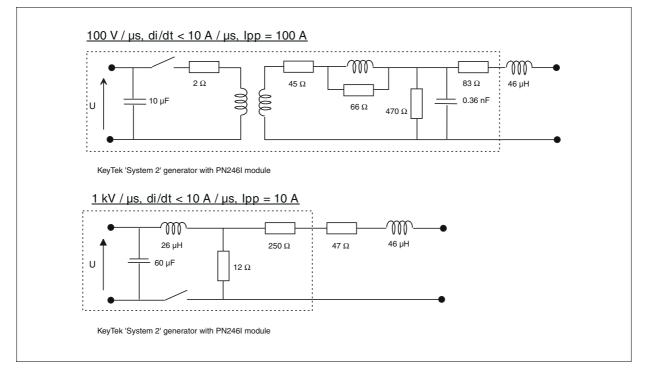

Test conditions:

 $2/10\mu s$ + and -2.5 and 5kV 500A (10 pulses of each polarity), $T_{amb}=25^{\circ}C$

Test result:

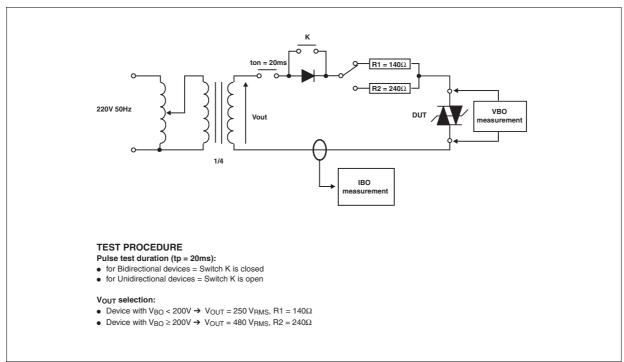
Fuse and Trisil OK after test in accordance with GR1089 requirements

In case of high current power cross test, the fuse acts like a switch by opening the circuit.


Test conditions:

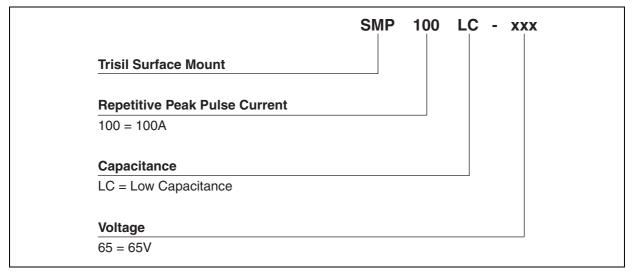
277V 25A (second level), $T_{amb} = 25^{\circ}C$

Test result:


Fuse safety opened and Trisil OK after test in accordance with GR1089 requirements

47/

Figure 10: Test circuit 1 for Dynamic I_{BO} and V_{BO} parameters


Figure 11: Test circuit 2 for I_{BO} and V_{BO} parameters

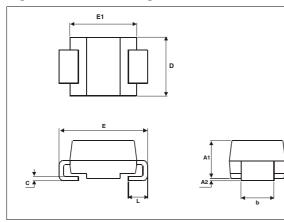

Figure 12: Test circuit 3 for dynamic I_H parameter

Figure 13: Ordering Information Scheme

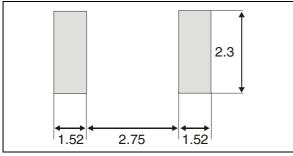

57

Figure 14: SMB Package Mechanical data

		DIMEN	ISIONS		
REF.	Millim	neters	Inches		
	Min.	Max.	Min.	Max.	
A1	1.90	2.45	0.075	0.096	
A2	0.05	0.20	0.002	0.008	
b	1.95	2.20	0.077	0.087	
С	0.15	0.41	0.006	0.016	
Е	5.10	5.60	0.201	0.220	
E1	4.05	4.60	0.159	0.181	
D	3.30	3.95	0.130	0.156	
L	0.75	1.60	0.030	0.063	

Figure 15: Foot Print Dimensions (in millimeters)

Table 6: Ordering Information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
SMP100LC-8	PL8				
SMP100LC-25	L25				
SMP100LC-35	L35				
SMP100LC-65	L06				
SMP100LC-90	L09				
SMP100LC-120	L12				
SMP100LC-140	L14	SMB	011 a	2500	Tape & reel
SMP100LC-160	L16		0.11 g	2500	Tape & Teer
SMP100LC-200	L20				
SMP100LC-230	L23				
SMP100LC-270	L27				
SMP100LC-320	L32	1			
SMP100LC-360	L36				
SMP100LC-400	L40				

Table 7: Revision History

Date	Revision	Description of Changes
09-Nov-2004	9	Absolute ratings values, table 3 on page 2, updated.
07-Dec-2004	10	SMP100LC-320, SMP100LC-360 and SMP100LC-400 addition.
20-Jun-2005	11	Telecom Circuit Protector added
57		9/10

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patient or patient of patients of strain patients of many patients and the patient of th

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of compagnies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

